

Clara Baffou, Janna Benazout, Enora Brehinier, Juliette Motret et Guillaume Kerjouan

PROJET GUERLÉDAN QUALIFICATION DU LIDAR TOPO-BATHYMÉTRIQUE NAVIGATOR

L'**o**céan en référence ENSTZ

POLYTECHNIQUE

SOMMAIRE

Emission d'une onde lumineuse verte

L'onde se propage à la vitesse de la lumière dans l'air

L'onde atteint la surface d'eau

04

05

03

01

02

L'onde se propage à la vitesse de la lumière dans l'eau

L'onde atteint le fond

Enregistrement des échos => Obtention d'une forme d'onde

Source de la figure : https://www.yellowscan.com/fr/knowledge/does-lidar-work-underwater/

Light Detection and Ranging

Figure 1 : Illustration d'une forme d'onde

Permet la production d'un nuage de points topographiques et bathymétriques pour la cartographie.

EXEMPLE DE NUAGE DE POINTS OBTENU

Figure 2 : Nuage de points obtenu dans le cadre de notre étude (levé du 08/10/2024)

LE LIDAR NAVIGATOR

Profondeur de Secchi

disque de Secchi

profondeur Secchi

Longueur d

Ouverture to faiscea

Angle de

Profondeur n pénétrat

Poids

Figure 4 : Schéma prise de Secchi

Caractéristiques du Navigator

onde	532 nm (vert)	
tale du u	4 mrad	
vue	40°	
nax. de ion	2 Secchi	
	3.7 kg	
		5

ZONES D'ÉTUDE

Barrage EDF de Guerlédan

- sombre.

Objectif:

Évaluer les performances du LiDAR sur trois zones distinctes caractéristiques des avec environnementales variées.

- profonde.
- sombre.

Zone Côtière du Mengant

- salée.

• Environnement : Eau douce. • Profondeur de Secchi : 2.60 m. Fond très

Ancienne Carrière de Trévéjean

• Environnement : Eau douce claire, peu

• Profondeur de Secchi : 6.80 m. Fond très

• Environnement : Fort hydrodynamisme, eau

• Profondeur de Secchi : 4 m.

ANALYSE COMPARATIVE DES JEUX DE DONNÉES LIDAR

Objectif : Comparaison des différents traitement internes proposés par YellowScan

Pré - traitement

Filtrage Gaussien : Application d'un ensemble de fonctions gaussiennes sur la forme d'onde.

Détection simple (None) : Détection des échos sans modélisation du signal conservant tous les détails originaux.

CRITÈRES DE COMPARAISON

- Rapidité de traitement
- Fiabilité de la classification interne
- Niveau de bruit
- Profondeur maximale atteinte
- Couverture du fond

Temps de traitement

Sensibilité	Détection simple	Détection par Gaussienne
Low	$10 \min$	10 min
Medium	$10 \min$	30 min
High	$10 \min$	60 min

Figure 7 : Temps de traitement pour chaque prétraitement

High

Figure 8 : Ensemble des cartes des classifications pour chaque prétraitement

Les différentes classifications

COHÉRENCE DE LA CLASSIFICATION ET NIVEAU DE BRUIT

Figure 9 : Coupe des classes contenant le fond en fonction du type de détection.

9

PROFONDEUR MAXIMALE DE PÉNÉTRATION

Figure 10 : Coupes dans la zone du Lagon

Détection simple	Détection par Gaussienne
$3.3 \mathrm{m}$	3.4 m
8.8 m	$3.8 \mathrm{m}$
$.2 \mathrm{m}$	4.4 m

Figure 11 : Profondeurs maximales au Lagon

Profondeur de pénétration au LiDAR limitée par la couleur du fond.

COUVERTURE DU FOND

Figure 12 : Carte des couvertures d'un levé LiDAR sur la zone du Lagon

CHOIX DE LA DÉTECTION

Objectif:

Compromis entre les critères pour garantir notre but : la qualification des levés

Critère/Fichier	Low None	Medium None	High None	Low Gaussian	Medium Gaussian	High Gaussian
Temps de traitement	10 min	10 min	10 min	10 min	30 min	60 min
Fiabilité de la classification	Moyen	Moyen	Mauvaise	Bonne	Bonne	Très bonne
Niveau de bruit	Moyen	Moyen	Elevé	Très faible	Faible	Moyen
Maximum de pénétration	Faible	Moyen	Profond	Faible	Moyen	Profond
Couverture du fond	Moins dense	Moyenne	Bonne	Moins dense	Moyenne	Très bonne

Figure 13 : Tableau récapitulatif du choix du prétraitement

IMPACT DE LA CORRECTION DE LA REFRACTION

Objectif : Comparaison des jeux de données High Gaussian avec et sans correction de la réfraction

Conclusion : Nécessité de la correction de la réfraction pour une bathymétrie exacte.

Coupe des différences avec et sans correction de la réfraction en fonction de la profondeur

% Lagon_High	146
sans_correction_refraction	140
	145
	144
	143
	142
	141

Figure 15 : Coupe des différences avec et sans correction de la réfraction en fonction de la profondeur

1m de différence entre les deux nuages à 3 m de profondeur

Explication de la méthodologie :

Figure 16 : Schéma explicatif du principe de répétabilité

Explication de la méthodologie :

Figure 17 : Schéma explicatif de l'incertitude verticale

Incertitude maximale admissible pour la position verticale d'un objet sous-marin ou d'un point sondé

Explication de la méthodologie :

Détection d'élément

Figure 20 : Détection d'un élément

Capacité à détecter des éléments de différentes tailles

16

RÉPÉTABILITÉ

Figure 21 : Histogramme et Carte des différences vol 2 - vol 1

17

INCERTITUDE VERTICALE

Figure 22 : Histogramme et Carte des différences vols 1 & 2 - MBES

Incertitude = 0.081m < 0.15m

INCERTITUDE HORIZONTALE

Figure 23 : Incertitude sur le coin 1 de la structure anthropique dans la zone du Mengant

Figure 24 : Incertitude sur le coin 2 de la structure anthropique dans la zone du Mengant

Ellipse de confiance à 95% inscrite dans le cercle de l'ordre exclusif de l'OHI

RECOUVREMENT

Figure 25 : Couverture d'une ligne de vol

Recouvrement supérieur à 200% donc remplit les conditions d'un levé à l'ordre exclusif

DETECTION

Figure 26 : Détection du CUBE au Lagon

Pas d'objet de référence au Mengant

Quelles sont les capacités du LiDAR Navigator de chez YellowScan?

Levé	Mengant (Bathy)	Lagon (Bathy)	Barrage (Topo)
Répétabilité	Oui	3cm écart vol1-vol2	3cm écart vol1-vol2
Incertitude Verticale	Ordre Exclusif	Ordre Exclusif	[-0.063 ; 0.063] (m)
Incertitude Horizontale	Ordre Exclusif	Ordre Exclusif	Ellipse inclue cercle 1m
Recouvrement	Même objet vu plus de 4 fois	Même objet vu plus de 4 fois	Même objet vu plus de 4 fois
Détection d'élément	X	Objet de 1m3 à 3m de profondeur	X

Figure 27 : Bilan de la qualification des levés

Les algorithmes détectent plus ou moins bien le fond en fonction du signal capté. **Perte de détection :** retour non détectable du fait du bruit avoisinant

Figures 28 et 29 : Formes d'ondes servant d'exemple tirées de nos données

Méthode d'empilement [Mad23]: moyennage des formes d'ondes afin d'améliorer le ratio signal/bruit.

Figure 30 : Principe de la méthode (Mader, D., Richter, K., Westfeld, P., Nistad, J.-G., Maas, H.-G. (2023))

Zones d'application

Figure 31 : Vue aérienne des zones (en rose les deux zones sélectionnées)

Figure 32 : Vue en coupe des zones

Mise en place d'un algorithme d'empilement simplifié et essai préliminaire sur une zone où le fond est détecté :

Figure 33 : Forme d'onde dans la zone où le fond est détecté

Figure 34 : Forme d'onde issue de l'empilement dans la zone où le fond est détecté

- Amélioration du ratio signal/bruit
- Intervalle de temps entre les retours cohérent avec la hauteur d'eau de la zone : 2,5m (sans correction de la réfraction) par l'analyse et 1,8 m sur le nuage de point corrigé de la réfraction

26

Application à une zone où le fond n'est a priori plus détecté:

Figure 33 : Forme d'onde dans la zone où le fond n'est pas détecté

Figure 34 : Forme d'onde issue de l'empilement dans la zone où le fond n'est pas détecté

- Amélioration du ratio signal/bruit
- Intervalle de temps entre les retours cohérent avec la valeur de la hauteur d'eau potentielle : 5m (sans correction de la réfraction) cohérent avec forte pente et la bathymétrie estimée au niveau de la perte de détection (USV.

27

- Amélioration significative du ratio signal/bruit
- Conversion de l'écart temporel en distance cohérent avec la réalité terrain
- Méthode simplifiée mais prometteuse
- Piste à explorer pour l'amélioration des performances du système : une étude plus rigoureuse et approfondie est à mener pour valider les capacités et la qualité de la méthode appliquée aux données du LiDAR Navigator.

RÉFÉRENCES BIBLIOGRAPHIQUES

- ZhongPing Lee, Shaoling Shang, Chuanmin Hu, Keping Du, Alan Weidemann, Weilin Hou, Junfang Lin, and Gong Lin. Secchi disk depth: A new theory and mechanistic model for underwater visibility. RemoteSensing of Environment, 169:139–149, 2015. 34
- Mader, D., Richter, K., Westfeld, P., Nistad, J.-G., Maas, H.-G. (2023). Analysis of the potential of full-waveform stacking techniques applied to coastal airborne LiDAR bathymetry data of the German Wadden Sea National Park. The International Hydrographic Review, 29(2), pp. 46-64.
- Organisation Hydrographique Internationale. Norme pour les Levés Hydrographiques (S-44, Édition 6.1.0), 2022. 12, 26
- Guillaume SICOT. Introduction to radiative transfer in water, UE 5.2 Remote Sensing, 2024. 34
- YellowScan. YellowScan Navigator datasheet, 2024. 6, 42ent de données, modèles numériques de terrain
- OHI, (2020), S44, Edition 6.1.0
- Bosser, P. (2024). Introduction à l'interpolation spatiale et aux géostatistiques. Cours de l'École Nationale Supérieure des Techniques Avancées de Bretagne.
- [Mad23] : Richter K. Westfeld P. Nistad J.-G. Maas H.-G. Mader, D. Analysis of the potential of full-waveform stacking techniques applied to coastal airborne lidar bathymetry data of the german wadden sea national park, 2023. 37, 38, 42, 47

ANNEXES

30

Répétabilité

LAGON

Répétabilité

BARRAGE

Répétabilité

Séléction de points incertitude horizontale

CUBE

COIN BARRAGE